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Structural Optimization with Frequency Constraints
Using the Finite Element Force Method
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A structural optimizationalgorithm is developed to minimize the weight of structures with truss and beam-type
members under single- or multiple-frequency constraints. The cross-sectional areas of the structural members
are considered as the design variables. The algorithm proposed combines the � nite element technique based on
the integrated force method with the mathematical programming technique. The equilibrium matrix is gener-
ated automatically using the � nite element analysis, and the compatibility matrix is obtained directly using the
displacement-deformation relations and the single value decomposition technique. When combining the equilib-
rium and the compatibility matrices with the force-displacement relations, the frequency eigenvalue equations are
obtainedwith element forces as variables.Three structures, composedof truss and frame-typemembers, are studied
to illustrate the procedure, and the results are compared with the literature. It is shown that, in structural problems
with multiple frequency constraints, the analysis procedure (force or displacement method) signi� cantly affects
the � nal optimum design. The structural optimization based on the force method results in a lighter design. The
proposed structural optimization method is ef� cient to analyze and optimize both truss and beam-type structures.

I. Introduction

D ESIGN optimization of structures with fundamental or
multiple-frequency constraints is extremely useful when im-

proving the dynamic performance of structures. Modifying a par-
ticular frequency can signi� cantly improve its overall performance
under dynamic external force excitations. Generally, the control of
the critical ranges of the natural frequencies is equivalent to the
control of the dynamic response in most narrowband forced excita-
tion problems. Structural optimization under frequency constraints
gives the ability to a designer to control the selected frequencies in
a desired fashion in order to improve the dynamic characteristicsof
the structure.

The concept of equilibrium of forces and compatibility of defor-
mations is fundamental to analysis methods for solving problems
in structural mechanics in general and in structural optimization in
particular. The equilibrium equations need to be augmented by the
compatibility conditions because the equilibrium equations are in-
determinate by nature, and determinacy is achieved by adding the
compatibility conditions. Generally, two analytical methods (dis-
placement and force) are available to analyze determinateand inde-
terminate structures.

Structural analysis and optimization algorithms developed in re-
cent years have generally been based on the displacement method,
e.g., Refs. 1–4. The displacement method is an ef� cient approach
for stress-displacement type analysis; however, it presents disad-
vantages in optimization problems when the number of stress con-
straints is larger than the number of displacementconstraints.Also,
in adaptive geometry optimization the displacement method is not
the most appropriate analysis method because the element forces
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are the primary variables.5;6 For a determinate structure or a not
highly redundant structure (the number of redundant elements is
lower than the displacement degrees of freedom), analysis using
the force method is computationally more ef� cient than the dis-
placement method. However, the force method has not been very
popular among researchers in structural optimization problems be-
cause the redundancy analysis required in the force method has not
been amenable to computer automation.

In the classicalformof the forcemethod, it is very dif� cult to gen-
erate the compatibility conditions.Splitting the given structure into
a determinate basis structure and redundantmembers generates the
compatibility in the classical force method. The compatibility con-
ditionsare writtenby establishingthe continuityof deformationsbe-
tween redundantmembersand thebasisstructure.Navier7 originally
developed this procedure for the analysis of indeterminate trusses.
Prior to the 1960s, the basis structure and redundantmembers were
generated manually. In the post-1960s several schemes have been
devised to automaticallygenerate redundantmembers and the basis
determinate structure,8;9 however with limited success. In the inte-
grated force method developed by Patnaik,10 Patnaik and Joseph,11

and Patnaik et al.12 both equilibrium equations and compatibility
conditionsare solvedsimultaneously.The generationof compatibil-
ity equations is based on extendingSt. Venant’s theory of elasticity
strain formulation to discrete structural mechanics and eliminating
the displacements in the deformation-displacement relation.

In the present study the integrated force method has been used as
an analyzer to optimize both truss and beam structures under fre-
quency constraints. It is intended to investigate the ef� ciency of the
force method in structural optimizationof the truss and beam struc-
tures under frequencyconstraints.The equilibrium and compatibil-
ity equations are solved simultaneously.A direct method has been
developed to generate the compatibility matrix for indeterminate
structures. The method is based on the displacement-deformation
relation and singular value decomposition (SVD) technique, and
there is no need to select consistent redundant members. For both
truss and beam structures the equilibrium matrix is generated auto-
matically through the � nite element analysis.

In most recent previous works the optimization algorithms were
mainly based on the optimality criterion technique. For example,
Refs. 13–25 employed optimality criteria methods in minimization
of the weight of truss and beam structures. For nonlinear prob-
lems the optimality criterion technique is computationally more
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ef� cient than other mathematical programming techniques.24;25 A
few optimality criterion algorithms17;19 are based on satisfying one
most critical constraint to avoid scaling and calculating a large
number of Lagrange multipliers.However, modern optimality crite-
rion algorithms18;20¡23 involve alternativelysatisfyingmultiplecon-
straints (scaling) and Karush–Kuhn–Tuker (KKT) condition (resiz-
ing). When the cross-sectionalarea and principal moment of inertia
are nonlinearly related (frame structures), scaling procedures nor-
mallyused in optimalitycriterionmethodsare approximatein nature
and scaling itself needs iteration procedure.23 Moreover, in the case
of multiple frequency constraints, determination of the Lagrangian
multipliers requires approximations.22 Considering these, the pow-
erful nonlinear mathematical programming method based on the
sequential quadratic programming (SQP) technique has been used
as the optimization algorithm in this study to � nd true optimum
solution.

The application and ef� ciency of the proposed method is illus-
trated by optimizing the truss and beam structures under single-
or multiple-frequency constraints. It is shown that using force or
displacement method as an analyzer can affect the � nal optimum
solution in the problems under multiple-frequency constraints. It
is illustrated that in problems with multiple-frequency constraints
optimization based on the force method can cause lighter design.
Using SQP methodas the optimizercan result lighterdesign in com-
parison to the optimality criterion technique commonly used in the
literature.

A short descriptionof the frequencyanalysis using the integrated
force method is presented. This is followed by a description of the
SQP algorithm and the derivation of the sensitivity derivatives for
the natural frequencies with respect to the cross-sectional areas.
Finally, the applicationof the algorithm is illustratedby optimizing
three different truss and beam-type structures.

II. Frequency Analysis Using Integrated Force Method
A discrete � nite element structure can be designated as structure

(d; f ), where d and f are the displacement and force degrees of
freedom, respectively.The structure (d; f ) has d equilibrium equa-
tions and r D . f ¡ d/ compatibility conditions. In static problems
the equilibrium equations in the displacement formulation can be
written as

KU D P (1)

where K is the system stiffness matrix of the structure (obtained by
assembling the stiffness matrices of the individual elements); P is
the external applied load vector; and U is the nodal displacement
vector. The compatibility conditions have been satis� ed implicitly
during the generation of the Eq. (1). The equivalent form of the
Eq. (1) in the force formulation can be written as10

SF D P¤ (2)

whichcanbeobtainedthroughcombinationof theequilibriumequa-
tions as

QF D P (3)

and compatibility equations as

C1 D 0 (4)

where element deformations can be related to the element forces
according to

1 D GF (5)

thus

S D

"
Q

¢ ¢ ¢ ¢ ¢ ¢
CG

#
; P¤ D

"
P
¢ ¢ ¢
0

#
(6)

where Q, C, and G are the (d £ f ) equilibriummatrix, (r £ f ) com-
patibility matrix, and ( f £ f ) � exibility matrix, respectively. The
matrices Q, C, and G are banded, and they have full-row ranks of
d , r , and f , respectively; the matrices Q and C depend on the ge-
ometry of the structure and are independentof design variables and

material properties. For a � nite element idealization the generation
of the equilibriummatrix Q and the � exibility matrix G are straight-
forward and can be obtained automatically.However the automatic
generation of the compatibility matrix C is a laborious task in the
standardforcemethod.In the integratedforcemethod the generation
of C is based on the elimination of the d displacement degrees of
freedom from f elemental deformations.Here, an ef� cient method
is proposed to derive the compatibilitymatrix directly. The method
is based on the displacement-deformation relations and SVD.

The displacement-deformation relationfor discretestructurescan
be obtained by equating internal strain energy and external work as

1
2 FT 1 D 1

2 PT U (7)

where 1 is the deformation vector. By substituting P from Eq. (3)
into Eq. (7), we can obtain

1
2
FT QT U D 1

2
FT 1 or 1

2
FT .QT U ¡ 1/ D 0 (8)

where 1 is the deformationvector.Because the force vector F is not
a null set, we � nally obtain the following relation between member
deformations and nodal displacements:

1 D QT U (9)

Equation (9) relates the f deformationsto the d nodal displacement
degrees of freedom; therefore, the r D . f ¡ d/ compatibility equa-
tions can be obtained through elimination of the m nodal displace-
ments from the f deformations. To obtain the compatibility ma-
trix, we can express displacements in terms of deformations using
Eq. (9) as

U D .QQT /¡1Q1 D .QT /pinv1 (10)

where the matrix .QT /pinv denotes the Moore–Penrose pseudo-
inverse of QT . SubstitutingdisplacementsU in Eq. (10) into Eq. (9),
we have

1 D QT .QT /pinv1 ) [I ¡ QT .QT /pinv]1 D 0 (11)

or

B1 D 0 (12)

where

B D
£
In ¡ QT .QT /pinv

¤
(13)

The rank of ( f £ f ) B matrix is r . It means that the rows of matrix
B are dependent on each other. To extract the (r £ f ) compatibility
matrix C from the matrix B, i.e., to reduce the matrix B to matrix
C, the SVD method is used.26 Applying SVD to B, we obtain

B D R6TT (14)

where R and T are ( f £ f ) orthogonalmatrices and

6 D
µ

3 0

0 0

¶

. f £ f /

(15)

with 3 D diagf¾1 ¾2 ¢ ¢ ¢ ¾r g and ¾1 ¸ ¾2 ¸ ¢ ¢ ¢ ¸ ¾r > 0. It fol-
lows that

B D R

µ
C

0

¶
(16)

Therefore the (r £ f ) compatibility matrix C can be representedas

C D 3[T1 T2 ¢ ¢ ¢ Ti ¢ ¢ ¢ Tr ]
T (17)

where Ti denotes the i th column of matrix T.
After obtaining the compatibility matrix C, the matrix S can be

used to obtain the nodaldisplacementin relative to the deformations
or element forces as

U D J1 or U D JGF (18)

In frequencyanalysisproblems the equationsof the motion in the
displacement formulation can be written as

M RU C KU D 0 (19)
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where M is the stiffness matrix of system and RU is acceleration
vector.ConsideringEq. (18) and noting that KU in the displacement
method is equivalent to SF in the force method, Eq. (19) can be
written as

M¤ RF C SF D 0 (20)

where

M¤ D

"
MJG
: : : :

0

#
(21)

Equation (20) represents the frequency equation in the framework
of the force formulation.

In free vibration analysis it is assumed that element forces are
harmonics in time, F D NF sin.!t/, where ! and NF are radian fre-
quency and force mode shape, respectively. Considering Eq. (19),
we can obtain

S NF ¡ !2M¤ NF D 0 (22)

The natural frequencies can be obtained easily from Eq. (22) by
using an eigenvalue extraction algorithm.

To overcome some computationaldif� cultiesduring the analysis,
the (n £ n) systemof equationsexpressedbyEq. (22) canbe reduced
to a (m £ m) system by taking advantage of the null matrices. To
obtain this, thematrices in Eq. (22) are partitionedinto the redundant
and basis determinate structure as

µ
Sdd Sdr

Srd Srr

¶ µ NFd

NFr

¶
¡ !2

"
Mr Md
: : : : : : :

0

# µ NFd

NFr

¶
D 0 (23)

or

Sdd
NFd C Sdr

NFr ¡ !2.Md
NFd C Mr

NFr / D 0; Srd
NFd C Srr

NFr D 0
(24)

Elimination of NFr from the .n £ n/ system of equations in Eq. (24)
results in the reduced .m £ m/ subsystem as

¡
Sdd ¡ SdrS¡1

rr Srd

¢ NFd ¡ !2
¡
Md ¡ Mr S¡1

rr Srd

¢ NFd D 0 (25)

NFr D S¡1
rr Srd

NFd (26)

Selection of consistent redundantmembers ensures the existence
of the inverse of Srr. The solutionof the reducedeigenvalueproblem
expressed by Eq. (25) gives all of the eigenvalues, whereas both
Eqs. (25) and (26) are used to calculate the force eigenvectors.Once
the force mode shapes are known, the displacement mode shapes
can be generated by using Eq. (18).

III. Optimization Algorithm
The optimization problem can be de� ned mathematically as fol-

lows.
Minimize structural mass:

M.A/ D
nX

i D 1

½i L i Ai (27)

Subject to m natural frequencyconstraints(behaviorconstraints):

g j .A/ D !2
j ¡ Q!2

j ¸ 0; j D 1; 2; 3; : : : ; m (28)

and n side constraints on the design variables

Ai ¡ QAi ¸ 0; i D 1; 2; 3; : : : ; n (29)

where ½i , Ai , L i and are the density, the cross-sectional area, and
length of the i th element, respectively;! j and Q! j are the j th natural
frequency and its speci� ed value, respectively; M is the total mass
of the structure; QAi is the lower limit on the i th design variable.

In this study the SQP method has been applied to solve the op-
timization problem discussed. The implementation of the SQP has
been done in MATLAB® .27

Based on the work by Powell,28 the method allows you to closely
mimic Newton’s method for constraint optimization just as is done

for unconstraint optimization. SQP is indirectly based on the solu-
tion of KKT conditions.Given the problem description in Eqs. (26)
and (27), the principal idea is the formulation of a QP subproblem
based on a quadratic approximation of the Lagrangian function as
follows:

Lag.A; ¸/ D M .A/ C
nX

j D 1

¸ j ¢ g j .A/ (30)

It is assumed that side constraintsin Eq. (29) havebeen expressed
as inequality constraints in Eq. (28). At each major iteration of
the SQP method, a QP subproblem is solved. The solution to the
QP subproblem produces an estimate of the Lagrange multipliers
¸ j . j D 1; : : : ; n/, and a search direction vector dº in each iteration
º, which is used to form a new iteration as

Aº C 1 D Aº C ®ºdº (31)

The step length parameter ®º is determined through a one-
dimensional minimization in order to produce a suf� cient decrease
in the merit function. At the end of the one-dimensionalminimiza-
tion, the Hessian of the Lagrangian, required for the solution of the
next positive de� nite quadratic programming problem, is updated
using the Broyden–Fletchet–Goldfarb–Shanno (BFGS) formula as

H.º C 1/ D H.º/ C q.º/qT .º/

qT .º/±º
¡ HT .º/±.º/±T .º/H.º/

dT .º/H.º/d.º/
(32)

where

±º D Aº C 1 ¡ Aº (33)

qº D r Lag.Aº C 1; ¸º C 1/ ¡ r Lag.Aº ; ¸º/ (34)

and H is the approximation of the Hessian of Lag at Aº C 1 .
Powell28 recommends keeping the Hessian positive de� nite even

though it may be positive inde� nite at the solution point. If Hº

is positive de� nite, then Hº C 1 obtained using Eq. (32) is also
positive de� nite if and only if qT .º/±.º/ is positive at each itera-
tion. However, when the Lagrangian has a negative curvature at
.Aº C 1; ¸º C 1/; qT .º/±.º/ is not any more positive. To guarantee that
the updated Hessian matrix Hº C 1 remains positive de� nite, Powell
suggests replacing qº by

µqº C .1 ¡ µ /Hº ±º (35)

where qº is given by Eq. (34) and µ is determined by

µ D

8
<

:

1 if ±T ºqº ¸ 0:2±T ºH±º

0:8±T ºH±º

0:8±T º H±º ¡ ±T ºqº
if ±T ºqº < 0:2±T º H±º

(36)

Additional details of the algorithm can be found in Ref. 28. As
it is obvious, the required gradient of the Lagrangian function in-
volves the gradientof the objectivefunctionand the constraintswith
respect to the design variables. Providing this information for the
optimizer can cause the optimum solution to be caught ef� ciently
and accurately.

In this work the gradient of the objective functions and side con-
straints are relatively straightforward because they are explicitly
dependent on the design variables. The gradient of the behavior
constraints (frequency) will be explained in the following section.

IV. Sensitivity of the Frequency Constraints
in the Displacement and Force Formulation

A. Displacement Formulation
Similar to the force formulation in Eq. (22), the undamped free

vibration in displacement formulation can be explained as

.KE ¡ ¹M/ NU D 0 (37)

where M is the system mass matrix in the vibrationanalysisand NU is
the displacementmode shape. ¹ D !2 is the square of the frequency
of the free vibration. Premultiplicationof Eq. (37) by NUT gives

NUT .KE ¡ ¹M/ NU D 0 (38)
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and differentiating Eq. (37) with respect to the typical design
variable Ai yields

NUT

³
dKE

dAi
¡ ¹

dM
dAi

¡ M
d¹

dAi

´
NU C

d NUT

dAi
.KE ¡ ¹M/ NU

C NUT .KE ¡ ¹M/
d NU
dAi

D 0 (39)

Considering that matrices KE and M are symmetric and using
Eq. (37), the sensitivity of the ¹ with respect to the typical design
variable Ai can be obtained as

d¹

dAi
D

NUT [dKE =dAi ¡ ¹.dM=dAi /] NU
NUT M NU

(40)

The mode shape is often normalized with respect to a symmetric
positive de� nite matrix M such that

NUT M NU D 1 (41)

thus

d¹

dAi
D NUT

³
dKE

dAi
¡ ¹

dM
dAi

´
NU (42)

Because the elementmass matrix for the beam element is linearly
dependent on the design variables (cross-sectional area), dM=dAi

can be found analytically. For the beam elements, with a known
relationship between the principal moment of inertia and cross-
sectional area, dKE=dAi can be computed analytically as well.

B. Force Formulation
The eigenvalueproblemin the force formulationcanbe expressed

as in Eq. (22) or alternatively as

.S ¡ ¹M¤/ NF D 0 (43)

where ¹ D !2 . Because the matrix S is not symmetric, a similar
approach as explained in Sec. IV.A cannot be used to obtain the
derivative of the eigenvalue ¹ with respect to the design variables.
To overcomethisproblem,a left-handeigenvectoris used,de� nedas

NFLT
.S ¡ ¹M¤/ D 0 (44)

Premultiplication of the Eq. (43) by the transpose of the left-hand
eigenvector NFLT

gives

NFLT
.S ¡ ¹M¤/ NF D 0 (45)

DifferentiatingEq. (45) with respect to the designvariable Ai yields

FLT

³
dS
dAi

¡ ¹
dM¤

dAi

¡ M¤ d¹

dAi

´
NF C dFLT

dAi
.S ¡ ¹M¤/ NF

C NFLT
.S ¡ ¹M¤/

d NF
dAi

D 0 (46)

Considering Eqs. (43) and (44), the sensitivity of the ¹ with re-
spect to the typical design variable X i is obtained from Eq. (46):

d¹

dAi
D

NFLT £
dS=dAi ¡ ¹

¡
dM¤

¯
dAi

¢¤
NF

NFL T M¤ NF
(47)

In this work both the dS¤=dAi and the dM¤=dAi matrices have been
computed using the central � nite difference method.

V. Illustrative Examples
A. 10-Bar Planar Truss

The 10-bar planar truss is shown in the Fig. 1. The material is
aluminum with Young’s modulus E D 107 psi (6:89 £ 1010 Pa) and
density ½ D 0:1 lbm/in.3 (2770 kg/m3). The minimum area for all
elements was set at 0.1 in.2 (0.645 cm2 ). At each of the four free
nodes, a nonstructural lumped mass of 1000 lbm (2.588 lb-s2/in.)
(454 kg) is added.

The number of displacement degrees of freedom is m D 8, and
the number of force degreesof freedomis n D 10. Thus, the number
of redundancy is r D 2. At each of the four free nodes, a nonstruc-

Fig. 1 10-bar planar truss: L = 360 in. (914.4 cm).

tural lumped mass of 1000 lbm is added. At the initial design all
of the cross-sectionalareas are 20 in.2 (129.03 cm2), and the initial
mass is 8392.94 lbm (3810.39 kg). This problem was investigated
by Venkayyaand Tischler,18 as well as by Grandhi and Venkayya,22

using the optimality criterion and displacement method. First, the
structurewas designedwith a fundamentalfrequencyof14Hz alone,
using both the displacementand force methods. A minimum weight
of 5810.24 lbm (2637.85 kg) was obtained. The number of iter-
ations required using the force method (FM) was lower than that
required by the displacement method (DM). The � nal results for
the cross-sectional areas and fundamental frequency are tabulated
in Tables 1 and 2, respectively. Venkayya and Tischler18 have re-
ported a minimum mass of 6665.577 lbm (3026.17 kg), where the
optimum design was taken as input to compute the speci� ed nat-
ural frequency. A fundamental natural frequency of 14.47 Hz was
obtained in the present analysis. A simulation carried out using the
solution reported in Ref. 18 as the initial design resulted in a � -
nal design, which converged to a lighter solution (5810.24 lbm)
(2637.85 kg). The current design was based on a consistent mass
matrix. A simulation using a lumped mass matrix resulted in a � nal
designwith a minimum mass of 6377.82 lbm (2895.53kg), suggest-
ing that a lumped mass matrix may have been used by Venkayya
and Tischler. To con� rm this � nding, the optimum result reported
in Ref. 18 was used as input to compute the fundamental natural
frequencybased on the lumped mass matrix. A fundamentalnatural
frequency of 13.96 Hz was obtained.

To demonstrate the application of the algorithm for designing a
structure with other speci� ed natural frequencies, the structure was
designedfor a secondnatural frequencyof 25 Hz. A minimum mass
of 1920.52 lbm (871.92 kg) was obtained.Grandhi and Venkayya22

reported a minimum mass of 2243.8 lbm (1018.69 kg). Here, the
optimum design was used as input to compute the second natural
frequency,resulting in a solution of 25.37 Hz for the second natural
frequency. The � nal results for the cross-sectional areas and the
fundamental frequency are given in the Tables 1 and 2.

Finally, the structure was designed under multiple natural fre-
quency constraints given by !1 D 7, !2 ¸ 15, and !3 ¸ 20. A mini-
mum mass of 1182.85 lbm (537.01 kg) was obtained. Upon closer
inspection the results reveal that the optimum cross-sectionalareas
for elements9 and 10 obtainedusing the FM are differentfrom those
using the DM. The optimum masses for both the FM and DM are ex-
actly the same and so are the � nal natural frequencies. It is inferred
that, as the optimizer is very sensitive to the output results from the
FM and the DM, a small difference causes the optimizer to select a
different path. For this case the number of iterations requiredby the
DM is now lower than that of FM. However, the computationaltime
using the FM is still lower than that of DM. Grandhi and Venkayya22

have reported a minimum weight of 1308.4 lbm (594.01 kg). The
� nal cross-sectional areas and natural frequencies are given in the
Tables 1 and 2. The variation of the optimum mass with the � rst
and second natural frequency limits is shown in Fig. 2. When in-
creasingthe fundamentalnatural frequencylimit, the optimum mass
increases drastically from 347.91 lbm (157.95 kg) for a fundamen-
tal natural frequency limit of 4 Hz to 25,216.7 lbm (11,448.38 kg)
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Table 1 Final design for the cross-sectional areas (cm2) for various frequency
constraints for the 10-bar planar truss

DM FM
!1 D 7 !1 D 7
!2 ¸ 15 !2 ¸ 15

Element no. !1 D 14 !2 D 25 !3 ¸ 20 !1 D 14 !2 D 25 !3 ¸ 20

1 219.909 48.166 38.619 219.903 48.123 38.245
2 47.916 35.852 18.239 47.916 35.832 9.916
3 219.909 48.194 38.252 219.903 48.200 38.619
4 47.916 35.852 9.910 47.916 35.884 18.232
5 0.645 14.800 4.419 0.645 14.826 4.419
6 0.645 7.632 4.200 0.645 7.632 4.194
7 123.626 41.135 24.110 123.626 41.103 20.097
8 123.626 41.142 20.084 123.626 41.181 24.097
9 54.677 13.200 11.452 54.677 13.200 13.890
10 54.677 13.194 13.897 54.677 13.187 11.4516
Mass, kg 2637.85 871.92 537.01 2637.85 871.92 537.01
No. of iterations 256 1035 637 237 973 705
No. of active 3 1 2 3 1 2

constraints
CPU time, s 10.54 40.81 25.96 7.51 28.70 21.62

Table 2 Final design of natural frequencies (Hz) in different frequency constraints for 10-bar truss

DM FM
!1 D 7 !1 D 7

Frequency Initial !2 ¸ 15 !2 ¸ 15
no. design !1 D 14 !2 D 25 !3 ¸ 20 !1 D 14 !1 D 25 !3 ¸ 20

1 11.23 14.00 8.01 7.00 14.00 8.01 7.00
2 33.05 18.01 25.00 17.62 18.01 25.00 17.62
3 36.85 29.40 25.00 20.00 29.40 25.00 20.00
4 68.26 34.55 26.68 20.00 34.55 26.68 20.00
5 75.86 49.36 32.83 28.20 49.36 32.83 28.21
6 85.18 53.11 40.92 31.07 53.11 40.94 31.07
7 85.74 85.10 62.52 47.68 85.10 62.52 47.68
8 103.10 90.41 64.79 52.35 90.41 64.78 52.35

Fig. 2 History of the variation of the optimum mass with respect to the
fundamental and second frequencies for the 10-bar planar truss.

for a fundamental natural frequency limit of 22 Hz. However, a less
dramatic change is observed for the second natural frequency limit.
The optimum mass increases from 46.83 lbm (21.26 kg) for a sec-
ond natural frequency limit of 4 Hz to 1410.14 lbm (640.20 kg) for
second natural frequency limit of 22 Hz.

B. 72-Bar Space Truss
The 72-bar space truss is shown in the Fig. 3. The problem size

is relatively large. The material is aluminum with Young’s mod-
ulus E D 107 psi (6:89£ 1010 Pa) and density ½ D 0:1 lbm/in.3

(2770 kg/m3). The minimum area for all elements was set at 0.1 in.2

(0.645 cm2 ). The number of displacement degrees of freedom is
m D 48, and the number of force degrees of freedom is n D 72.
Therefore, the number of redundancies is r D 24. Without linking
the design variables, the number of design variables is 72, and the
number of constraints is 232. When linking the design variables
into 16 groups, the number of design variables becomes 16, and the
number of constraints reduces to 64.

At nodes 1–4 a nonstructural lumped mass of 5000 lbm
(12.94 lb-s2/in.) (2270 kg) is added. At the initial design all of
the cross-sectional areas are 1 in.2 (6.45 cm2), and initial mass
is 853.09 lbm (387.30 kg). This problem was investigated by
Konzelman21 using the dual method based on approximation con-
cepts for optimization and the � nite element method based on dis-
placementmethod for analysis.Here, the structurewas designedfor
a fundamental frequency of 4 Hz, using both the displacement and
the force methods. A minimum mass of 632.361 lbm (287.09 kg)
was obtained. For this example the DM was found to be compu-
tationally more ef� cient than the FM approach. The reason is that
SVD technique is not a cheap technique, and when the number of
redundancy increases (as in this example) generating the compati-
bility matrix using SVD becomes computationallyexpensive.Thus,
in optimal design problems with frequency constraints the analysis
of not highly redundant structures using the FM is not necessarily
more ef� cient than the DM. The � nal results for the cross-sectional
areas and frequencies are given in Tables 3 and 4, and they are
in excellent agreement with those reported by Konzelman,21 who
reported a minimum mass of 632.36 lbm (287.09 kg). Because of
the symmetry imposed by the structural geometry and the linking
scheme, the eigenvalue corresponding to the fundamental mode of
vibration is a repeated eigenvalue of multiciplity two. This means
that in the initial and optimum design the � rst and second modes of
vibration have the same natural frequencies. Thus, a small change
or deviation in the geometry of the structure can switch the mode of
vibration from � rst to the second mode.



SEDAGHATI, SULEMAN, AND TABARROK 387

Table 3 Final design for the cross-sectional areas (cm2 ) for the
various frequency constraints for the 72-bar planar truss

DM FM
!1 D 4 !1 D 4

Element no. !1 D 4 !3 ¸ 6 !1 D 4 !3 ¸ 6

1–4 4.717 3.499 4.717 3.499
5–12 5.514 7.932 5.514 7.932
13–16 0.645 0.645 0.645 0.645
17–18 0.645 0.645 0.645 0.645
19–22 11.750 8.056 11.750 8.056
23–30 5.573 8.011 5.573 8.011
31–34 0.645 0.645 0.645 0.645
35–36 0.645 0.645 0.645 0.645
37–40 18.950 12.812 18.950 12.812
41–48 5.607 8.061 5.607 8.061
49–52 0.645 0.645 0.645 0.645
53–54 0.645 0.645 0.645 0.645
55–58 25.935 17.279 25.934 17.279
59–66 5.628 8.088 5.628 8.088
67–70 0.645 0.645 0.645 0.645
71–72 0.645 0.645 0.645 0.645
Mass, kg 287.092 327.605 287.092 327.605
No. of iterations 544 379 510 379
No. of active 9 10 9 10

constraints
CPU time, s 283.78 200.37 302.96 227.62

Fig. 3 72-bar space truss: a = 60 in. (152.4 cm).

When the eigenvalues are repeated, the structure becomes ex-
tremely sensitive to any change in design variables.Usually the nat-
ural frequenciesof the � rst few modes are important,and to separate
these eigenvalues in the optimum design the frequency constraints
of the � rst few modes have to be separated.In this example,because
of the intrinsic nature of symmetry in the structure, any attempt to
separate the fundamentaland second natural frequenciesin the opti-
mum design failed.To quantifythe performanceof the algorithmfor
multiple-frequencyconstraintproblems, the structure was designed
using the DM and FM for !1 D 4 and !3 ¸ 6. A minimum weight

Table 4 Final design results for the natural frequencies (Hz) with
different sets of frequency constraints for the 72-bar truss structure

DM FM
Frequency Initial !1 D 4 !1 D 4
no. design !1 D 4 !3 ¸ 6 !1 D 4 !3 ¸ 6

1 3.113 4.000 4.000 4.000 4.000
2 3.113 4.000 4.000 4.000 4.000
3 5.374 5.001 6.000 5.001 6.000
4 9.425 6.505 6.247 6.505 6.247
5 13.189 8.595 9.074 8.595 9.074

Fig. 4 Six-member frame (two story and one bay).

of 721.597 lbm (327.605 kg) was obtained. The results are given in
Tables 3 and 4.

C. Six-Member Frame (Two-Story and One-Bay)
The six-memberframe is illustratedin theFig. 4. This problemhas

been studied by Khan and Willmert15 and McGee and Phan23 using
the optimality criterion method combined with the � nite element
method based on the displacement formulation.

A uniformly distributed nonstructural mass of 10 lbm/in.
(178.740 kg/m) was added to the horizontal members of the frame
structure. The density and Young’s modulus are 0.28 lbm/in.3

(7757 kg/m3) and 30,000,000 psi (20:7 £ 1010), respectively. The
moment of inertia I is empirically related to the area A by the fol-
lowing expressions15;23:

I D 4:6248A2; 0 · A · 44

I D 256A ¡ 2300; 44 < A · 88:2813

where A is square inches. A constraint (minimum) on the design
variables (cross-sectional area of the members) was speci� ed at
7.9187 in.2 (51.088 cm2 ), and a maximum was set to 88.28 in.2

(569.55 cm2). At the initial design all of the cross-sectional areas
are equal to 30 in.2 (193.55 cm2 ) with an initial mass of 11,088 lbm
(5034 kg). First, the structure was analyzed using both the DM and
FM giving a fundamental natural frequency of 78.5 rad/s. A min-
imum mass of 9410.39 lbm (4272.32 kg) was obtained. The � nal
design variables (cross-sectionalareas) are different in the DM and
FM solutions, suggesting that the optimum solution is not unique.
However, the � nal natural frequencies are the same. Although the
optimum results obtained using the FM and DM are different, they
resultedin the same optimummass and same � nalnatural frequency.
Therefore, both are optimum solutions.The results are given in the
Tables5 and 6. Khan and Willmert15 and McGee and Phan23 report a
minimum weight of 9561 and 9815 lbm (4341 and 4456 kg), respec-
tively. To verify that the optimality criterion employed by Refs. 15
and 23 may haveproduceda localminimum, anothersimulationwas
performed, starting with the solution reported in Refs. 15 and 23.
This solution process resulted in a design change and converged
to a lighter solution of 9410.39 lbm (4272.32 kg). Thus, it is con-
� rmed that the solution in Refs. 15 and 23 does not representa local
minimum.
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Table 5 Final design for the cross-sectional areas (cm2 ) for different
sets of frequency constraints (rad/s) for the six-member frame

DM FM
!1 D 78:5 !1 D 78:5

Element no. !1 D 78:5 !2 ¸ 180 !1 D 78:5 !2 ¸ 180

1 215.867 120.556 51.088 206.289
2 51.088 141.802 215.551 62.746
3 51.088 283.870 365.982 138.767
4 367.203 227.761 51.088 297.876
5 51.088 51.088 51.088 51.088
6 253.087 228.549 253.799 256.361
Mass, kg 4272.35 4418.46 4272.32 4365.56
No. of iterations 320 726 258 246
No. of active 4 2 4 3

constraints
CPU time, s 15.31 34.29 11.76 11.21

Table 6 Final design results for the natural frequencies (rad/s) for
different sets of frequency constraints for the six-member frame

DM FM
Frequency Initial !1 D 78:5 !1 D 78:5
no. design !1 D 78:5 !2 ¸ 180 !1 D 4 !2 ¸ 180

1 69.044 78.500 78.500 78.500 78.500
2 286.840 146.670 220.806 146.668 180.000
3 380.324 268.399 436.420 268.350 371.289
4 476.168 350.723 486.975 350.667 418.804
5 499.720 465.900 540.125 465.780 485.897

The structure was again designed using multiple natural fre-
quency constraints of !1 D 78.5 Hz and !2 ¸ 180. Surprisingly,
the optimum mass of 9615.78 lbm (4365.56 kg) using FM and
9732.3 lbm (4418.46 kg) using DM was obtained. As explained
before, this speci� c problem is path dependent, and the slight dif-
ference in output results from analyzers (FM and DM) may have
caused a different optimum solution. Investigating the � nal natural
frequenciesobtained from the DM and the FM, it was revealed that
in the FM the inequality constraint is active in the optimum solu-
tion, and this is not observed in the solution from the DM. This is
the reason for a lighter mass obtained using the FM. For this case
the FM performed better computationally than the DM. It can be
inferred that for frequency constraint problems the computational
time totally depends on the iteration number.

VI. Conclusions
A structural optimization algorithm has been developed to min-

imize the weight of truss and frame-type structures under single-
or multiple-frequencyconstraints.The integratedforce formulation
has been used to analyze the dynamics of the structure. The re-
quired compatibility matrix in the formulation has been derived
directly using a displacement-deformation relation and the single
value decomposition technique. Mathematical programming based
on the sequential quadratic programming technique has been used
to optimize the structure.

The main objectiveis to investigatethe relativeperformanceof the
force and displacement methods to design and optimize truss and
frame-type structures with frequency constraints. It is concluded
that in some problems with multiple-frequencyconstraints the op-
timization based on the force method can result in a lighter design.
This is not a general case, and these are speci� c results for the
examples presented. Moreover, it is also demonstrated that the se-
quential quadratic programming method can result in a lighter � nal
optimal design in comparison to the commonly used optimality cri-
terion technique (as shown in the examples). The proposed method
has proved to be ef� cient when analyzing and optimizing truss and
beam-type structures.
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